Design and Copyright : 北島孝二 (Koji Kitajima) (1993).
|
Pieces | 12 | K-L are congruent. |
Selection | random notchable | |
Length | 6 | |
Goal | 6×6×6 | |
Holes | 8 | |
Solutions | 1,896 | |
642 | without notches on the edge | |
0 | without notches on the face | |
Goal | 6 Piece Burr ×1 | |
Holes | 0 | |
Solutions | 17 / 27 | |
Goal | 6 Piece Burr ×2 | |
Holes | 0 | |
Solutions | 1 / 1 |
There are 18,940 kinds of possible combination which can construct 2 Nothcable Solid 6 Piece Burr without internal holes. The combinations which have a unique solution are 7,820 kinds.
6PB×2 Combi | Piece Set Combi |
---|---|
1 | 14,582 |
2 | 3,527 |
3 | 550 |
4 | 212 |
5 | 41 |
6 | 15 |
7 | 6 |
8 | 5 |
10 | 2 |
18,940 |
The following combinations (mirror each other) are 10 kinds of combination, that have 26 solutions.
1. | 0 51×2 255 791 823 927 959 974 991 1006 1023 | 0 51×2 255 823 887 910 927 959 974 991 1023 |
The following combination is 2 kinds of combination, that has 45 solutions, it is the maximum.
1. | 51×2 791×2 823×2 910×2 974×2 1023×2 |
There are 114 kinds of possible combination with which 6PB×2 can be constructed by using 12 kinds of piece. The combinations which have a unique solution are the following 28 kinds (mirror 14 kinds), that have no solution of 6×6×6 without notches on the face.
1. | 0 17 51 255 823 855 887 927 959 991 1006 1023 | 0 17 51 255 887 927 942 959 974 991 1006 1023 |
2. | 0 51 102 823 855 870 887 927 959 991 1006 1023 | 0 51 102 870 887 927 942 959 974 991 1006 1023 |
3. | 0 51 119 187 791 823 855 927 959 991 1006 1023 | 0 51 119 187 887 910 927 942 959 974 991 1023 |
4. | 0 51 119 187 823 855 870 887 927 959 991 1023 | 0 51 119 187 870 927 942 959 974 991 1006 1023 |
5. | 0 51 187 255 791 823 887 927 959 974 991 1006 | 0 51 187 255 823 887 910 927 959 974 991 1006 |
6. | 0 51 187 358 823 887 927 942 959 974 991 1023 | 0 51 187 614 823 855 927 959 974 991 1006 1023 |
7. | 0 51 187 358 823 927 942 959 974 991 1006 1023 | 0 51 187 614 823 855 887 927 959 974 991 1023 |
8. | 0 51 187 791 823 855 887 927 959 974 1006 1023 | 0 51 187 823 887 910 927 942 974 991 1006 1023 |
9. | 0 51 187 823 855 870 887 927 959 974 1006 1023 | 0 51 187 823 870 887 927 942 974 991 1006 1023 |
10. | 0 51 255 358 823 910 927 942 959 974 991 1023 | 0 51 255 614 791 823 855 927 959 974 991 1023 |
11. | 0 51 358 791 823 855 927 942 959 991 1006 1023 | 0 51 614 855 887 910 927 942 959 974 991 1023 |
12. | 0 51 358 791 823 887 927 942 959 974 991 1023 | 0 51 614 823 855 910 927 959 974 991 1006 1023 |
13. | 0 51 358 823 855 870 887 927 942 959 991 1023 | 0 51 614 855 870 927 942 959 974 991 1006 1023 |
14. | 0 51 358 823 870 887 927 942 959 974 991 1023 | 0 51 614 823 855 870 927 959 974 991 1006 1023 |
The following combination has 6 kinds of 6PB×2 using 12 kinds of piece. There are 2 solutions of 6×6×6 without notches on the face.
1. | 0 17 51 255 823 887 927 959 974 991 1006 1023 |
There are 402 kinds of combination with which 6PB×2 that has unique solution can be constructed by using 11 kinds of piece. There are 2 combinations (mirror each other) that have 2 solutions of 6×6×6 without notches on the face. ☞ 6+6=CUBE Improved
1. | 0 51 255 358 823 870 910 927 959 974 1023×2 | 0 51 255 614 791 823 870 927 974 991 1023×2 |
When using Millable burrs, there are 39,450 kinds of possible combination. The combinations which have a unique solution are 16,035 kinds.
6PB×2 Combi | Piece Set Combi |
---|---|
1 | 29,562 |
2 | 7,520 |
3 | 1,591 |
4 | 534 |
5 | 149 |
6 | 49 |
7 | 30 |
8 | 10 |
9 | 2 |
10 | 2 |
12 | 1 |
39,450 |
The following combination is 12 kinds of combination, that have 42 solutions.
1. | 0 51×2 191 223 255 823 927 959 974 991 1023 |
The following combination is 8 kinds of combination, that has 48 solutions, it is the maximum.
1. | 0×2 187 191 223 255 823 959 974 991 1023×2 |
There are 351 kinds of possible combination with which 6PB×2 can be constructed by using 12 kinds of piece. The combinations which have a unique solution are 190 kinds.
The following combinations can assemble 6PB×2, but 2 6PBs are different.
1. | 0×2 191×2 255×2 823×2 991×4 | 0×2 223×2 255×2 959×4 974×2 |